Effects of grade and mass distribution on the mechanics of trotting in dogs.
نویسنده
چکیده
Quadrupedal running on grades requires balancing of pitch moments about the center of mass (COM) while supplying sufficient impulse to maintain a steady uphill or downhill velocity. Here, trotting mechanics on a 15 deg grade were characterized by the distribution of impulse between the limbs and the angle of resultant impulse at each limb. Anterior-posterior manipulation of COM position has previously been shown to influence limb mechanics during level trotting of dogs; hence, the combined effects of grade and COM manipulations were explored by adding 10% body mass at the COM, shoulder or pelvis. Whole body and individual limb ground reaction forces, as well as spatiotemporal step parameters, were measured during downhill and uphill trotting. Deviations from steady-speed locomotion were determined by the net impulse angle and accounted for in the statistical model. The limbs exerted only propulsive force during uphill trotting and, with the exception of slight hindlimb propulsion in late stance, only braking force during downhill trotting. Ratios of forelimb impulse to total impulse were computed for normal and shear components. Normal impulse ratios were more different from level values during uphill than downhill trotting, indicating that the limbs act more as levers on the incline. Differential limb function was evident in the extreme divergence of forelimb and hindlimb impulse angles, amplifying forelimb braking and hindlimb propulsive biases observed during level trotting. In both downhill and uphill trotting, added mass at the up-slope limb resulted in fore-hind distributions of normal impulse more similar to those of level trotting and more equal fore-hind distributions of shear impulse. The latter result suggests a functional trade-off in quadruped design: a COM closer to the hindlimbs would distribute downhill braking more equally, whereas a COM closer to the forelimbs would distribute uphill propulsion more equally. Because muscles exert less force when actively shortening than when lengthening, it would be advantageous for the forelimb and hindlimb muscles to share the propulsive burden more equally during uphill trotting. This functional advantage is consistent with the anterior COM position of most terrestrial quadrupeds.
منابع مشابه
Effects of mass distribution on the mechanics of level trotting in dogs.
The antero-posterior mass distribution of quadrupeds varies substantially amongst species, yet the functional implications of this design characteristic remain poorly understood. During trotting, the forelimb exerts a net braking force while the hindlimb exerts a net propulsive force. Steady speed locomotion requires that braking and propulsion of the stance limbs be equal in magnitude. We pred...
متن کاملStudy of MHD Second Grade Flow through a Porous Microchannel under the Dual-Phase-Lag Heat and Mass Transfer Model
A semi-analytical investigation has been carried out to analyze unsteady MHD second-grade flow under the Dual-Phase-Lag (DPL) heat and mass transfer model in a vertical microchannel filled with porous material. Diffusion thermo (Dufour) effects and homogenous chemical reaction are considered as well. The governing partial differential equations are solved by using the Laplace transform method w...
متن کاملA Nonlocal First Order Shear Deformation Theory for Vibration Analysis of Size Dependent Functionally Graded Nano beam with Attached Tip Mass: an Exact Solution
In this article, transverse vibration of a cantilever nano- beam with functionally graded materials and carrying a concentrated mass at the free end is studied. Material properties of FG beam are supposed to vary through thickness direction of the constituents according to power-law distribution (P-FGM). The small scale effect is taken into consideration based on nonlocal elasticity theory of E...
متن کاملUnsteady Magneto Hydro Dynamic Flow of a Second Order Fluid over an Oscillating Sheet with a Second Order Slip Flow Model
Unsteady slip-flow of second grade non-Newtonian electrically conducting fluid over an oscillating sheet has been considered and solved numerically. A second-order slip velocity model is used to predict the flow characteristic past the wall. With the assumption of infinite length in x-direction, velocity of the fluid can be assumed as a function of y and t, hence, with proper variable change pa...
متن کاملEnhancement of Bone Healing by Static Magnetic Field in the Dog: Biomechanical Study
Objective- Although the promotional effects on bone healing of pulsed electromagnetic fields (PEMF)have been well demonstrated, the effects of static magnetic fields (SMF) remained unclear. In this study,effects of SMFs on clinical and biomechanical aspects of bone healing using a canine unstable osteotomygap model were investigated .Design- Prospective descriptive trial.Animals- Fifteen mongre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 214 Pt 3 شماره
صفحات -
تاریخ انتشار 2011